|
|
|
|
Artificial Intelligence
eXercise #4
Induction and Heuristics
Exercises - Induction and Heuristics
- How would you solve the following problem:
A team of mountain climbers equipped with only an altimeter and
compass find themselves in heavy fog on the side of a mountain -
what would the optimal strategy for reaching the summit?
- Experiment with the following PROLOG program:
/* THE MONKEY AND THE BANANAS PROBLEM */
/* an exercise in selective linear induction */
/* by P. R. Whitehouse */
/* after Patterson 1990 */
domains
floor= symbol
chair= symbol
bananas= symbol
monkey= symbol
predicates
can_reach(symbol,symbol) /*X can reach Y */
is_dextrous(symbol) /* X is a dextrous animal */
is_close(symbol,symbol) /* X is close to Y */
can_get_on(symbol,symbol) /* X can get on Y */
is_under(symbol,symbol) /* X is under Y */
is_tall(symbol) /* X is tall */
is_in_room(symbol) /* X is in the room */
can_move(symbol,symbol,symbol) /* X canmove Y near Z */
can_climb_on(symbol,symbol) /* X can climb onto Y */
clauses
is_in_room(bananas). /* bananas are in the room*/
is_in_room(chair). /* a chair is in the room*/
is_in_room(monkey). /* a monkey is in the room*/
is_dextrous(monkey). /* a monkey is dextrous*/
is_tall(chair). /* the chair is tall*/
can_move(monkey,chair,bananas). /* the monkey can move the chair towards the bananas*/
can_climb_on(monkey,chair). /*monkey can climb on the chair*/
can_reach(X,Y) if is_dextrous(X) and is_close(X,Y).
is_close(X,Z) if can_get_on(X,Y) and is_under(Y,Z) and is_tall(Y).
can_get_on(X,Y) if can_climb(X,Y).
is_under(Y,Z) if is_in_room(X) and is_in_room(Y) and is_in_room(Z) and can_move(X,Y,Z).
|
|
|
|
|
|
|