
Algorithms and Pseudocode 1 compiled by C.Thompson 2019 (see bibliography)

Algorithms
And Pseudocode

A compilation by C. Thompson
2019

Algorithms and Pseudocode 2 compiled by C.Thompson 2019 (see bibliography)

Table of Contents
What is an Algorithm .. 3

Three Categories of Algorithmic Operations .. 3

Representing Algorithms .. 3

Conventions for writing pseudocode (QCAA, n.d.) .. 4

SEQUENCE ... 5

Activity 1 ... 6

SELECTION ... 6

ITERATION ... 9

MODULES .. 12

Pseudocode Exercises ... 14

Bibliography .. 18

Algorithms and Pseudocode 3 compiled by C.Thompson 2019 (see bibliography)

What is an Algorithm
An Algorithm, (after Al Kho-war-iz-mi a 9th century Persian mathematician) is an ordered sequence
of unambiguous and well-defined instructions that performs some task and halts/stops in a finite
time.

Let's examine the four parts of this definition more closely

• an ordered sequence means that you can number the steps (it's socks then shoes!)
• unambiguous and well-defined instructions mean that each instruction is clear, do-able, and

can be done without difficulty
• performs some task
• halts in finite time (algorithms terminate!). If a planned solution does not finish, then it is

NOT an algorithm.

Algorithms can be executed by a computing agent (see “Hidden Figures” (Anon., 2016)) which is not
necessarily a computer.

Once an algorithm has been designed and perfected, it must be translated – or programmed – into
code that a computer can read.

We create programs to implement algorithms. Algorithms consist of steps, where programs consist
of statements. It is not necessary to code an algorithm. We use algorithms in everyday life.

Three Categories of Algorithmic Operations
Algorithmic operations are ordered in that there is a first instruction, a second instruction etc.
However, this is not enough. An algorithm must have the ability to alter the order of its instructions.
An instruction that alters the order of an algorithm is called a control structure or construct.

There are (fundamentally) three control structures as listed below.

1. SEQUENCE or sequential operations - instructions are executed in order
2. SELECTION or conditional ("question asking") operations - a control structure that asks a

true/false question and then selects the next instruction based on the answer
3. ITERATION or repetition operations (loops) - a control structure that repeats the execution

of a block of instructions

Unfortunately, not every problem or task has a "good" algorithmic solution. There are unsolvable
problems:

• no algorithm can exist to solve the problem (Halting Problem)
• "hard" (intractable) problems - algorithm takes too long to solve the problem (Traveling

Salesman Problem)
• problems with no known algorithmic solution

Representing Algorithms
There are many ways to represent an algorithm. Common methods for computing related solutions
include:

• Flow Charts (e.g. Flowol)

Algorithms and Pseudocode 4 compiled by C.Thompson 2019 (see bibliography)

• Nassi-Schneiderman Charts

count <-- 1 to 10
 num <-- count*2

output num
output “Still going”

output “finished loop”

• Pseudocode
o natural language constructs modelled to look like statements available in many

programming languages
o There is no universal “standard” for writing pseudocode. The QCAA syllabus has

some reference to using pseudocode and that has been included over the page.
o Pseudocode is simply a list of instructions to perform some task. In this course we

will enforce four standards for good pseudocode:
1. All algorithms will always start with a BEGIN and finishes with an END. Additional

modules such as functions or procedures also contain these key words.
2. Each instruction should be unambiguous (that is the computing agent, in this case

the reader, is capable of carrying out the instruction) and effectively computable
(do-able).

3. Completeness. Nothing is left out.
4. Key words are written in BOLD UPPERCASE

Pseudocode is best understood by looking at examples. Each example below demonstrates one of
the control structures used in algorithms: SEQUENCE, SELECTION, or ITERATION operations. Also
listed are all variables used at the end of the pseudocode.

Conventions for writing pseudocode (QCAA, n.d.)
KEYWORDS are written in bold capitals and are often words taken directly from programming languages.
For example, IF, THEN and ELSE are all words that can be validly used in most languages.
Keywords do not have to be valid programming language words as long as they clearly convey the intent of
the line of pseudocode.

Statements that form part of a repetition loop (FOR or WHILE) are indented by the same amount to indicate
that they form a logical grouping.

In a similar way, IF, THEN and ELSE statements are indented to clearly distinguish the alternative
processing paths.

The end of WHILE loop and IF, THEN and ELSE statements are explicitly indicated by the use of ENDWHILE
and ENDIF at the appropriate points.

Pseudocode should clearly indicate what is happening at each step, including formulas of calculations.
For example:
CALCULATE net is not as clear as CALCULATE net = gross − tax.
Programmers prefer to use a more abbreviated version in which memory cells used to store the input are
given program-like names; num1 num2
For example:

INPUT num1
INPUT num2

is preferable to
INPUT first number
INPUT second number

Algorithms and Pseudocode 5 compiled by C.Thompson 2019 (see bibliography)

SEQUENCE
SEQUENCE is a series of commands executed linearly or in sequence without any option to deviate
down a different pathway. Every algorithm will most likely have elements of sequence regardless of
what other constructs may be employed.

Example #1 - Computing Sales Tax: Write an algorithm in pseudocode to determine the task of
computing the final price of an item after figuring in sales tax. Note the three types of instructions:
INPUT (get), process/CALCULATE/ASSIGN () and OUTPUT (display)

BEGIN

INPUT itemCostPrice

INPUT salesTaxRate

CALCULATE salesTaxAmt  itemCostPrice * salesTaxRate

CALCULATE itemSalePrice  itemCostPrice + salesTaxAmt

OUTPUT itemSalePrice

END

Variables:

itemCostPrice = the cost price of an item (real)

salesTaxRate = the tax rate (GST)(real)

salesTaxAmt = calculated tax (Item cost times the Tax Rate)(real)

itemSalePrice = the cost price + the sales tax (real)

Line 3 above is an example of an ASSIGNMENT; that is, we assign a value to, (in this case), a variable
called salesTaxAmt. The value assigned is result of the calculation on the right side of the equals.
When we use INPUT as in lines 1 and 2, we are also assigning values to the variables itemCostPrice
and salesTaxRate.

We extract and list all variables used in our pseudocode. This will be useful when translating
pseudocode into a programming language. Note that variable names should be written in
camelCase which always begins with a lower-case letter. If the variable name is “composed” of two
or more words, no space is used, and each subsequent word begins with a capital or upper-case
letter.

Notice after each variable description, there is the word (e.g. real), indicating that a particular
variable will store data containing (potentially) decimal places, in other words “real” numbers. In
Python, real numbers are described as Float or floating-point decimals.

A list of common data types you will use in writing pseudocode are:

• Real – number containing decimal places
• Integer – whole numbers only
• String – a group of characters (could be letters, numbers, combination of both and other

characters)
• Boolean – has only the value of either True or False. Often used to control a loop or

selection

There are some other less commonly used data types which will be referenced as required.

Algorithms and Pseudocode 6 compiled by C.Thompson 2019 (see bibliography)

Activity 1
Determine suitable variable names for the following situations. For each variable, determine the
most suitable data type:

A. stores a loop counter value for computer game
B. stores a pet’s name and their owner’s name for a Vet surgery
C. stores member number, registration number, owner’s name, owner’s address for a car,

number of cylinders, engine size, original car colour for the RACQ breakdown service.

SELECTION
SELECTION involves control flowing along different
pathways dependent upon the value of a decision.

In a flowchart, this is often shown as a decision box (a
diamond) with two pathways flowing from it and the
choice being the answer to the decision box question.

Example #2 - Computing Weekly Wages: Gross pay
depends on the pay rate and the number of hours worked
per week. However, if you work more than 40 hours, you
get paid time-and-a-half for all hours worked over 40.
Create an algorithm in pseudocode to compute the gross
pay given pay rate and hours worked. Hours worked can
only be recorded as whole hours.

BEGIN

INPUT hoursWorked

INPUT payRate

IF hoursWorked ≤ 40 THEN

CALCULATE grossPay  payRrate * hoursWorked

ELSE

CALCULATE grossPay  payRate * 40 + 1.5 * payRate * (hoursWorked - 40)

ENDIF

DISPLAY grossPay

END

Variables:

hoursWorked = number of hours worked (integer)

payrate = rate of pay per hour (real)

grossPay = gross pay (real)

This example introduces the conditional or SELECTION control structure. On the basis of the
true/false question asked in line 3, we execute line 4 if the answer is True; otherwise if the answer is

Algorithms and Pseudocode 7 compiled by C.Thompson 2019 (see bibliography)

False we execute the lines subordinate to line 5 (i.e. line 6). In both cases we resume the
pseudocode at line 8.

Note the use of ENDIF to signify the end of the SELECTION construct. Thus, everything between the
IF statement and the ENDIF statement is part of the SELECTION construct.

The condition tested (hoursWorked ≤ 40) always results in either a True or False value. Such
conditions are called BOOLEAN conditions (which, like Boolean data types can only be either True or
False).

Boolean variables can also form part of a Boolean condition. The following examples of Selection
conditions are all equivalent.

IF continue = True THEN

 OUTPUT (‘Game will continue’)

ENDIF

Is equivalent to …

IF continue THEN

 OUTPUT (‘Game will continue’)

ENDIF

Note that both examples do not include an ELSE statement. Sometimes there is no option suitable if
the Boolean condition is false.

Using IF and ELSE gives two possible choices (paths) that a program can follow. However,
sometimes more than two choices are wanted. To do this, the statement ELSE IF is used.

This simple algorithm (BBC, 2019) prints out a different message depending on how old you are.
Using IF, ELSE and ELSE IF, the steps are:

BEGIN

INPUT age

IF age ≥ 60 THEN

OUTPUT (‘You are aged to perfection!’)

ELSE

IF age = 50 THEN

OUTPUT (‘Wow, you are half a century old!’)

ELSE

OUTPUT (‘You are a spring chicken!’)

ENDIF

ENDIF

END

Note that there must be an endif for every if used and indentation is critically important. You can
see that lines 2, 4 and 10 are aligned and 5, 7 and 9 are indented and aligned as these represent the

Algorithms and Pseudocode 8 compiled by C.Thompson 2019 (see bibliography)

inner NESTED condition. Fundamentally, there is no limit to how many nested conditions you can
develop.

In situations where there is a series of IF .. ELSE IF .. statements such as below:

BEGIN

INPUT grade

IF grade ≥ 100 THEN

 OUTPUT (“Perfect Score”)

ELSE IF grade > 89 THEN

 OUTPUT (“Grade = A”)

ELSE IF grade > 79 THEN

 OUTPUT (“Grade = B”)

ELSE IF grade > 69 THEN

 OUTPUT (“Grade = C”)

ELSE IF grade > 59 THEN

 OUTPUT (“Grade = D”)

ELSE

 OUTPUT (“Grade = F”)

ENDIF

END

We can see that as control flows from one IF statement to the next, evaluating the value of grade at each
statement. When this situation arises (i.e. evaluating the same expression) we can replace the IF..
THEN.. ELSE IF .. with a CASE statement (sometimes in pseudocode known as a SWITCH statement).
(Parkland College Business/Computer Science & Technologies, 2010)

BEGIN

INPUT grade

CASE OF

 grade ≥ 100

 OUTPUT (“Perfect Score”)

 grade > 89

 OUTPUT (“Grade = A”)

 grade > 79

 OUTPUT (“Grade = B”)

 grade > 69

 OUTPUT (“Grade = C”)

 grade > 59

 OUTPUT (“Grade = D”)

Algorithms and Pseudocode 9 compiled by C.Thompson 2019 (see bibliography)

 ELSE

 OUTPUT (“Grade = F”)

END CASE

END

Note that not all languages implement a CASE statement and you must use the IF..THEN..ELSE
IF control structure.

ITERATION
ITERATION occurs when control flows around a loop construct. In other words, dependent upon the
value of a loop test condition, control will flow down a set of instructions until it reaches the end of
those within the loop and then revert to the top of the loop to execute again (if appropriate).
Subordinate commands within the loop are identified by being indented under the loop test
condition.

Example #3 - Computing a Quiz Average: Write a pseudocode solution to calculate your quiz average
from a number of quizzes.

BEGIN

INPUT numberOfQuizzes

INIT sum  0

INIT count  0

WHILE count < numberOfQuizzes DO

INPUT quizGrade

CALCULATE sum  sum + quizGrade

CALCULATE count  count + 1

ENDWHILE

CALCULATE average  sum / numberOfQuizzes

DISPLAY average

END

Variables:

numberOfQuizzes = number of quizzes undertaken (integer)

sum = running total of quiz scores (real)

count = loop counter measuring times of times through loop (integer)

quizGrade = score on a particular quiz (real)

average = the average of all quizzes (real)

Note that sum and count are assigned the value zero (0) in lines 2 and 3. We call this initialising the
value of the variables. What it means we set an initial or starting value to a known value. We
identify initializing by adding the keyword INIT before the assignment.

Algorithms and Pseudocode 10 compiled by C.Thompson 2019 (see bibliography)

This example introduces an ITERATION or loop control statement. As long as the condition in line 4 is
True, we execute the subordinate operations 5-7. When the condition becomes False, we resume
the pseudocode at line 9.

This is an example of a pre-test or WHILE DO iterative control structure (executing the inner block of
instruction while the Boolean condition is True. There is also a post-test or REPEAT UNTIL iterative
control structure which executes a block of statements until the condition tested at the end of the
block is True. Not all programming languages (e.g. Python) implement a REPEAT UNTIL construct,
however it can be used in pseudocode. In nearly all cases a REPEAT UNTIL can be rewritten as a
WHILE DO.

Both WHILE DO and REPEAT UNTIL are formally called INDEFINITE iteration (with WHILE DO
specifically a pre-tested indefinite iterative loop and REPEAT UNTIL being a post-tested indefinite
iterative loop). They are called INDEFINITE as the end of the loop depends entirely upon a Boolean
condition that may be different each time the program is executed.

There is also a FIXED iterative construct used when the loop instruction must be executed a known
or FIXED number of times. When the number of iterations is known, a FOR DO loop is used. This is
called DEFINITE (or known) iteration.

The above example could easily be redeveloped as a DEFINITE loop as follows:

BEGIN

INPUT numberOfQuizzes

INIT sum  0

FOR count  1 to numberOfQuizzes DO

INPUT quizGrade

CALCULATE sum  sum + quizGrade

ENDFOR

CALCULATE average  sum / numberOfQuizzes

DISPLAY average

END

In this example, as the number of quizzes is input early in the pseudocode sequence, there is a
known fixed number of iterations or loops that will be accessed. Line 3 tells the loop to begin at 1
and continue to the number of quizzes entered.

So, the above example is probably best designed as a fixed or DEFINITE iterative loop, i.e. a FOR DO
loop. Let’s look at some other examples that would specifically be best designed as an INDEFINITE
iterative loop.

(Thompson and Shuttlewood, 2008) Example #4: A girl has saved $100 to spend on Christmas
presents. She requires an algorithm which will accept the value of presents that are to be purchased
and show the amount of money remaining. The algorithm will stop when the value of the present
exceeds the money remaining.

This example is best done as a pre-tested INDEFINITE loop (WHILE DO) because:

Algorithms and Pseudocode 11 compiled by C.Thompson 2019 (see bibliography)

1. We must test if she has enough for her first purchase before allowing her to purchase and
subtract that amount from her savings. If she tries to purchase something greater than the
initial $100 then the algorithm must flag that with the appropriate message. Hence, we are
pre-testing.

2. It is INDEFINITE because we do not know beforehand how many times she will be able to
purchase presents as it is based upon the amount left and the cost of each presents; factors
unknown at the beginning.

BEGIN

INIT money  100.00

INPUT presentCost

WHILE presentCost ≤ money DO

 CALCULATE money  money – presentCost

 OUTPUT money

ENDWHILE

INPUT presentCost

OUTPUT (‘Not enough money left for that purchase’)

END

Variables:

money = initial money amount available (real)

presentCost = the value of each present to be purchased (real)

Example #5: A boy is saving his pocket money he earns from odd jobs around the home to buy a
skateboard. An algorithm is required to record the money that is saved and output a message when
the target is reached.

This example is best done as a post-tested INDEFINITE loop (REPEAT UNTIL) because:

1. The solution must first accept an amount of saving and add this to the total saved. It must
then compare the total saved to the target amount and send an appropriate message when
reached. Since the test condition happens after the initial deposit, we are post-testing.

2. It is INDEFINITE because we do not know beforehand how many times he needs to deposit
money as it is based upon if he has reached the total required and how much he deposits
each time; factors unknown at the beginning.

BEGIN

INPUT targetAmount

INIT total  0

REPEAT

INPUT money

CALCULATE total  total + money

UNTIL total ≥ targetAmount

Algorithms and Pseudocode 12 compiled by C.Thompson 2019 (see bibliography)

OUTPUT (‘Target has been reached’)

END

Variables:

money = money deposited (real)

targetAmount  target amount required for skateboard purchase (real)

total  running total of savings

Now, it was mentioned earlier, that some programming languages (such as Python) do not allow for
a post-tested iterative construct such as REPEAT UNTIL. In most cases, these can be re-written as
pre-tested WHILE DO constructs. The above example can be rewritten by pre-testing the total
against the targetAmount before entering the loop the first time. Because initially the boy will not
have the required savings, control will enter the loop.

BEGIN

INPUT targetAmount

INIT total  0

WHILE total < targetAmount DO

INPUT money

CALCULATE total  total + money

ENDWHILE

OUTPUT (‘Target has been reached’)

END

MODULES
Very often, there is a need to create algorithmic sections that are required to be executed several
times at various times. While the instructions can be re-written where appropriate, there is a
definite waste of resources in doing so. A more efficient way is to create the segment as a Module
or Method. Modules or Methods are used to group segments for a specific purpose.

Most languages identify two types of modules; FUNCTIONS and PROCEDURES. Some languages
group them together. For the purposes of these notes, one way to distinguish between them is to
look at what they do. Mostly, a procedure will be a selection of code to perform a specific task
(perhaps print a formatted receipt of sales). On the other hand, a function is a section of code that
is called upon to perform some operation and return a single value to the part that called it (perhaps
determine the GST on a sale). (StackExchange, 2013)

Functions and Procedures are CALLED by the main pseudocode when required. We can see their use
in the following example.

Example #6 – an algorithm is required to calculate GST on goods purchased and print a receipt
showing total cost (inc GST) as well as the GST separately.

FUNCTION calculateGST (saleCost)

 CALCULATE gst  saleCost * 0.10

 RETURN gst

Algorithms and Pseudocode 13 compiled by C.Thompson 2019 (see bibliography)

END FUNCTION

PROCEDURE printReceipt

 OUTPUT (‘Store Headings’)

 REPEAT

 OUTPUT itemName

 OUTPUT itemCost

 OUTPUT total

 OUTPUT gst

 UNTIL no more items

END PROCEDURE

INIT total  0

INIT gst  0

WHILE more items DO

 INPUT itemCost

 CALL calculateGST (itemCost)

 CALCULATE Total  total + itemCost + gst

END WHILE

CALL printReceipt

Notice that the function calculateGST is called from within the WHILE DO loop a number of times (while there
are items sold) and each time the itemCost is sent to the function (and referenced in the function as
saleCost) to calculate the GST amount for that item. The value of the GST is then returned to the main part of
the algorithm and used to determine the running total. This continues until no more items are sold. The loop
completes and control is then passed to a procedure call printReceipt for final printing of the sales receipt.

The variable in the function calculateGST (saleCost) is called a parameter and it receives its value from the
main part of the pseudocode that CALLS the function. The value passed is called an argument.

Finally, there is some contention that Functions and Procedures are one and the same and in a sense this is
correct. However, if we distinguish them by their ability (or not) to return a value then we can make a valid
comparison and recognise their uses.

QCAA Note

The document “Supporting resource: Representing
algorithms with pseudocode” released by QCAA in late 2019
suggests that modules (e.g. functions and procedures)
should be described in algorithms as follows:

Where NAME is the name of the module. This document
assumes either methodology is acceptable.

Algorithms and Pseudocode 14 compiled by C.Thompson 2019 (see bibliography)

Pseudocode Exercises
NB – in any question where you are required to complete or develop an algorithm in pseudocode, complete
the question by listing the variables, their description (as above) and data types.

1. Trace the following program plans and describe the actions that each performs:
a) INPUT age

CALCULATE lucky  365 * age
OUTPUT lucky

b) INPUT number
CALCULATE a  number + 10
CALCULATE b  number * 10
CALCULATE c  a + b
OUTPUT c

c) INPUT litres
INPUT rate
CALCULATE cost  litres * rate
OUTPUT cost

2. Carefully read the following algorithm. Describe what actions it performs.

INPUT age

INPUT height

INPUT weight

CALCULATE lucky  age + height – weight

OUTPUT lucky

3. Brian’s Curtains charge $13 per metre of material and a fixed charge of $25 when making
curtains for customers. A program is to be created to perform the calculations for the shop
owner.
Copy and complete the following algorithm and design an interface appropriate to the problem.

INPUT length

CALCULATE cost  ________ * 13 +

OUTPUT ______

4. An insurance company pays its employees a salary of $100 per week plus $15 per hour for every
hour worked during the week.
a) Plan a program to calculate the amount of pay owed to employees.
b) List the variables, what they are to be used for and the data types for each.

5. A contractor who erects fences charges his customers $104 per metre for materials and $25 per
metre to erect the fence. He wishes to have a computer program to assist in the calculation of
his accounts. Develop an algorithm in pseudocode to be used for this purpose. List all relevant
variables, descriptions and data types.

6. A painter requires a program to calculate the number of litres of paint needed for a job. One

litre of paint will cover 16 square metres of wall. Plan a solution that will accept the length and
height of the wall, determine the number of square metres to be painted and then show the
number of litres of paint needed.

Algorithms and Pseudocode 15 compiled by C.Thompson 2019 (see bibliography)

7. Read the following algorithm and describe the task it performs.

total  0

INPUT people

FOR count  1 to people DO

INPUT donation

CALCULATE total  total + donation

 ENDFOR

OUTPUT total

8. A program is needed to find the total number of runs scored by the 11 players in a cricket team.

Complete the following algorithm to perform this task.

total  0

FOR player  ___________________________

INPUT _________

CALCULATE total 

ENDFOR

OUTPUT ________

9. Read the following algorithm and describe the task it performs.

INPUT password

WHILE password <> ‘xyz’ DO

 OUTPUT ‘Wrong Password, try
again’

INPUT password

ENDWHILE

 OUTPUT ‘Access Permitted’

10. Read the following algorithm and describe the task it performs.

INPUT passwd

count  1

WHILE passwd <> ‘xyz’ and count < 3 DO

 OUTPUT (‘Wrong Password, try again’)

INPUT passwd

Algorithms and Pseudocode 16 compiled by C.Thompson 2019 (see bibliography)

CALCULATE count  count + 1

ENDWHILE

IF passwd = ‘xyz’ THEN

OUTPUT (‘Access Permitted’)

 ELSE

OUTPUT (‘Access Denied’)

 ENDIF

11. Read the following algorithm and describe the task which it performs.

INPUT age

INPUT height

IF age > 15 and height < 180 THEN

 OUTPUT (‘Unsuitable for basketball’)

ELSE

 OUTPUT(‘Consider basketball’)

12. A algorithm has to read in the following information on a person: AGE, SEX, HEIGHT and SPORT.

Create a test expression to identify the following people:
a) Males over 16;
b) People over 15 or taller than 165cms;
c) Football players over 15;

d) Males or females over 16 and less than 150 cms tall;
13. In JCs Computing Company, there are several junior salespeople who are paid less wages than

the seniors. Employees under the age of 18 are paid $10.75 per hour while others are paid
$15.25 per hour. A solution is needed which will calculate the wages due to an employee.
Copy and complete the following algorithm for such a program.

INPUT age

INPUT hoursWorked

IF _________________________ THEN

 CALCULATE wage  ___________________

OUTPUT wage

Algorithms and Pseudocode 17 compiled by C.Thompson 2019 (see bibliography)

14. An algorithm is needed to calculate the amount and cost of materials which are needed when
framing a picture. The program must accept the dimensions of the frame and calculate the cost
of the frame and glass given that frames cost $7.25/m each and glass costs $4.50/sq m

When a procedure is defined which returns a single value of a simple data type, for example the
cost of framing as in the above problem, it is better to use a particular form of procedure called
a function. The use of functions provides some distinct advantages to the user.

For this solution you will need to create a FUNCTION frame which will accept two parameters
size1 and size2 (from the main algorithm length and width) and RETURN result (determined
by the formula 2*(size1 + size2)*FRAMECOST) and a FUNCTION glass which also accepts
two parameters, size1 and size2 (from the main algorithm length and width) and RETURN
result (determined by the formula (size1 * size2)*GLASSCOST).

FRAMECOST and GLASSCOST are constants initialized at the start.

FUNCTION frame (size1, ______)

CALCULATE amount  2*(_____ + _______)

__________ result  amount * __________

RETURN ___________

END FUNCTION

FUNCTION ______________ (size1, ______)

CALCULATE area  (_____ * _______)

__________ result  area * __________

RETURN ___________

INIT FRAMECOST  7.25

INIT _________  4.5

INPUT length

INPUT width

____________ totalCost  CALL frame (length, _____) + CALL
________(_____,_____)

OUTPUT totalCost

Algorithms and Pseudocode 18 compiled by C.Thompson 2019 (see bibliography)

Bibliography
BBC, 2019. Bitesize. [Online]
Available at: https://www.bbc.com/bitesize
[Accessed 1 March 2019].

Cal Poly College of Engineering, 2003. Pseudocode Standard. [Online]
Available at: http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html
[Accessed 4 March 2019].

Parkland College Business/Computer Science & Technologies, 2010. Case Structure Pseudocode.
[Online]
Available at: http://virtual.parkland.edu/kcouch/CIS122/Week8/case_psuedocode.htm
[Accessed 4 March 2019].

QCAA, n.d. Digital Solutions 2019 v1.2. [Online]
Available at:
https://www.qcaa.qld.edu.au/downloads/portal/syllabuses/snr_digital_solutions_19_syll.pdf
[Accessed 1 Mar 2019].

StackExchange, 2013. Pseudocode: \Function vs. \Procedure?. [Online]
Available at: https://tex.stackexchange.com/questions/145736/pseudocode-function-vs-procedure
[Accessed 4 Mar 2019].

Thompson and Shuttlewood, 2008. Algorithms, Programming and Delphi. Mackay: s.n.

	A compilation by C. Thompson
	2019
	What is an Algorithm
	Three Categories of Algorithmic Operations
	Representing Algorithms
	Conventions for writing pseudocode (QCAA, n.d.)
	Activity 1

	SEQUENCE
	SELECTION
	ITERATION
	MODULES
	Pseudocode Exercises
	Bibliography

